You are currently viewing rekombitáns sars cov 2 ProteoSilver Silver Stain Kit
recombitant sars cov 2

rekombitáns sars cov 2 ProteoSilver Silver Stain Kit

FD Rapid GolgiStain készlet (nagy)

termék név Katalógusszám Méret Letöltések Technikai segítségnyújtás
FD Rapid GolgiStain ™ készlet (nagy) PK401 Akár 50 egéragy Kézi
hivatkozások
MSDS
Videó
Protocol / Papír
SARS-CoV-2 Proteins
SARS-CoV-2 Proteins

Az 1, 2  Golgi-Cox impregnálás az egyik leghatékonyabb technika az idegsejtek normális és rendellenes morfológiájának, valamint a glia tanulmányozásának. A Golgi-technika alkalmazásával finom morfológiai változásokat fedeztek fel a neuronális dendritekben és a dendritikus tüskékben a gyógyszerekkel kezelt állatok agyában, valamint a neurológiai betegségekben szenvedő betegek postmortem agyában 3, 4 . A Golgi-festés megbízhatatlansága és időigényes folyamata azonban komoly akadályt jelentett e technika széles körű alkalmazásában.

Az FD Rapid GolgiStain Kit a Ramón-Moliner 2 , Glaser és Van der Loos 5 által leírt módszerek elvén alapul . Ez a készlet nemcsak drámai módon javította és leegyszerűsítette a Golgi-Cox technikát, de rendkívül megbízhatónak és érzékenynek bizonyult az idegsejtek és a glia, különösen a dendrit tüskék morfológiai részleteinek bemutatására is. Az FD Rapid GolgiStain ™ készletet széles körben és széles körben tesztelték számos állatfaj agyán, valamint a halál utáni emberi agyak mintáin.

sars-cov-2-rapid-antigen-test
sars-cov-2-rapid-antigen-test

A készlet tartalma:
Szobahőmérsékleten tárolandó

A-oldat 250 ml
B-oldat 250 ml
C-oldat 250 ml x 2
D-oldat 250 ml
E-oldat 250 ml
Üvegminta-retriever 2
Természetes hajkefe 2
Cseppentő üveg 1

Szükséges anyagok, de nem tartoznak hozzá:

  • Kétszer desztillált vagy ioncserélt víz.
  • Műanyag vagy üveg csövek vagy injekciós üvegek.
  • Szövettani kellékek és felszerelések, beleértve a zselatinnal bevont mikroszkóp tárgylemezeket, fedőlemezeket, festőedényeket, etanol, xilol vagy xilol helyettesítőit, gyantás rögzítő közeget (pl. Permount®) és egy fénymikroszkópot.
Recombinant SARS CoV 2 Spike RBD
Recombinant SARS CoV 2 Spike RBD

Általános leírása

Kényelmesen csomagolt, rendkívül stabil és rendkívül érzékeny ProteoSilver ideális termék minden fehérjetudós számára. A készlet az ezüstfestő reagensek elkészített oldatait és részletes utasításait tartalmazza az optimális eredmények elérése érdekében. A 0,1 ng / mm 2  fehérje (BSA) kimutatási határával és rendkívül alacsony háttérrel a ProteoSilver az alacsony bőségű fehérjék kiváló kimutatásához vezet.

Alkalmazás

A  fehérjék vizualizálására szolgáló gélek festésére a ProteoSilver  Silver Stain Kit-t használták.

Tulajdonságok és előnyök

  • Az előkevert és előre lemért  megoldások csökkentik az egyes alkatrészek beszerzésének és előkészítésének idejét és költségeit
  • Az optimalizált protokollok  segítenek megteremteni a feltételeket a legjobb eredmény elérése érdekében
  • A magas érzékenység és az alacsony háttér  biztosítja, hogy a fehérjék nagyon alacsony mennyiségben detektálhatók és feloldhatók legyenek más fehérjékből
  • MALDI kompatibilis –  Az érdekes fehérjefoltokat tovább jellemezhetjük tömegspektrometriával
  • A szobahőmérsékleti stabilitás  lehetővé teszi a könnyű és kényelmes tárolást

Jogi információk

A ProteoSilver a Sigma-Aldrich Co. LLC védjegye.

 

SARS-CoV-2 (COVID-19) S1 Recombinant Protein

10-423 0.1 mg
EUR 714.3
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2(COVID-19) S1 Recombinant Protein

10-424 0.1 mg
EUR 714.3
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S2 Recombinant Protein

10-426 0.1 mg
EUR 651.3
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S1 Recombinant Protein

10-428 0.1 mg
EUR 651.3
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) M Recombinant Protein

10-429 0.1 mg
EUR 651.3
Description: Membrane glycoprotein is involved in the formation and budding of the viral envelope, that is, in the assembly and release of the virus, inhibiting IFN attack.

SARS-CoV-2 (COVID-19) E Recombinant Protein

11-072 0.1 mg
EUR 695.4
Description: Coronavirus envelope (E) proteins are short (100 residues) polypeptides that contain at least one transmembrane (TM) domain and a cluster of 2-3 juxtamembrane cysteines. These proteins are involved in viral morphogenesis and tropism, and their absence leads in some cases to aberrant virions, or to viral attenuation. In common to other viroporins, coronavirus envelope proteins increase membrane permeability to ions, plays a central role in virus morphogenesis and assembly. Acts as a viroporin and self-assembles in host membranes forming pentameric protein-lipid pores that allow ion transport. Also plays a role in the induction of apoptosis. Activates the host NLRP3 inflammasome, leading to IL-1beta overproduction.

SARS-CoV-2 (COVID-19) S2 Recombinant Protein

11-184 0.2 mg
EUR 1212
Description: It's been reported that SARS-CoV-2 can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S1 Recombinant Protein

97-086 0.1 mg
EUR 714.3
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, DPP4, CEACAM etc.. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S1 Recombinant Protein

97-087 0.1 mg
EUR 752.1
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, DPP4, CEACAM etc.. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S1 Recombinant Protein

97-092 0.1 mg
EUR 714.3
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, DPP4, CEACAM etc.. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S1 Recombinant Protein

92-727 0.05 mg
EUR 468.6
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) S1 Recombinant Protein

92-731 0.05 mg
EUR 556.8
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) RBD Recombinant Protein

10-078 0.1 mg
EUR 619.8
Description: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is an enveloped, single-stranded, positive-sense RNA virus that belongs to the Coronaviridae family 1. The SARS-CoV-2 genome, which shares 79.6% identity with SARS-CoV, encodes four essential structural proteins: the spike (S), envelope (E), membrane (M), and nucleocapsid protein (N) 2. The S protein is a transmembrane, homotrimeric, class I fusion glycoprotein that mediates viral attachment, fusion, and entry into host cells 3. Each ~180 kDa monomer contains two functional subunits, S1 (~700 a.a) and S2 (~600 a.a), that mediate viral attachment and membrane fusion, respectively. S1 contains two major domains, the N-terminal (NTD) and C-terminal domains (CTD). The CTD contains the receptor-binding domain (RBD), which binds to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells 3-5. Although both SARS-CoV and SARS-CoV-2 bind the ACE2 receptor, the RBDs only share ~73% amino acid identity, and the SARS-CoV-2 RBD binds with a higher affinity compared to SARS-CoV 3, 6. The RBD is dynamic and undergoes hinge-like conformational changes, referred to as the “down” or “up” conformations, which hide or expose the receptor-binding motifs, respectively 7. Following receptor binding, S1 destabilizes, and TMPRSS2 cleaves S2, which undergoes a pre- to post-fusion conformation transition, allowing for membrane fusion 8, 9. _x000D__x000D__x000D_Polyclonal RBD-specific antibodies can block ACE2 binding 10, 11, and anti-RBD neutralizing antibodies are present in the sera of convalescent COVID19 patients 12, identifying the RBD as an attractive candidate for vaccines and therapeutics. In addition, the RBD is poorly conserved, making it a promising antigen for diagnostic tests 13 14. Serologic tests for the RBD are highly sensitive and specific for detecting SARS-CoV-2 antibodies in COVID19 patients 13 15. Furthermore, the levels of anti-RBD antibodies correlated with SARS-CoV-2 neutralizing antibodies, suggesting the RBD could be used to predict an individual's risk of disease 13._x000D_

SARS-CoV-2 (COVID-19) NTD Recombinant Protein

10-079 0.1 mg
EUR 821.4
Description: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is an enveloped, single-stranded, positive-sense RNA virus that belongs to the Coronaviridae family 1. The SARS-CoV-2 genome, which shares 79.6% identity with SARS-CoV, encodes four essential structural proteins: the spike (S), envelope (E), membrane (M), and nucleocapsid protein (N) 2. The S protein is a transmembrane, homotrimeric, class I fusion glycoprotein that mediates viral attachment, fusion, and entry into host cells 3. Each ~180 kDa monomer contains two functional subunits, S1 (~700 a.a) and S2 (~600 a.a), that mediate viral attachment and membrane fusion, respectively. S1 contains two major domains, the N-terminal (NTD) and C-terminal domains (CTD). In both SARS-CoV and SARS-CoV-2, the CTD contains the receptor-binding domain (RBD), which binds to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells3-5. The NTD of SARS-CoV-2 does not bind to ACE26, and the function of NTD in SARS-CoV-2 infection is not well understood. In other CoVs, the NTD may promote attachment by binding to sugar moieties7 and might play a role in the conformational change of S2 required for membrane fusion8. While most neutralizing antibodies target the RBD domain and block receptor binding, potent neutralizing antibodies targeting NTD were isolated from convalescent COVID19 patients9, identifying the NTD as an attractive candidate for vaccines and therapeutics. In addition, the NTD is a promising antigen for diagnostic tests, as there is only 53.5% homology between the NTD of SARS-CoV-2 and SARS-CoV10.

SARS-CoV-2 (COVID-19) NSP3 Recombinant Protein

10-406 0.1 mg
EUR 651.3
Description: The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells.

SARS-CoV-2 (COVID-19) NSP8 Recombinant Protein

10-415 0.1 mg
EUR 651.3
Description: Cleavage by the viral main protease, 3CLpro results in generating the nsp8 protein, The nsp8 protein has been shown to associate with several other nsps and to colocalize with these nsps in cytoplasmic complexes that are important for viral RNA synthesis. It forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers. Nsp8 was shown to have RNA-dependent RNA polymerase (RdRp) activity that could be involved in producing primers utilized by nsp12 which is normally accepted to be the RdRp for SARS-CoV.

SARS-CoV-2 (COVID-19) NSP1 Recombinant Protein

10-416 0.1 mg
EUR 651.3
Description: The Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV) is an enveloped, positive-stranded RNA viruses that can cause a severe respiratory disease. Its genome consists of a ∼30 kb linear, non-segmented, capped, polycistronic, polyadenylated RNA molecule, the first two-third of which is directly translated into two large polyproteins. These two polypeptides are processed into 16 non-structural proteins (nsps), forming the replicase complex, which is active in the cytoplasm in close association with cellular membranes. Nsp1 was proved to be able to suppress host gene expression by promoting host mRNA degradation and was involved in cellular chemokine deregulation. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses.

SARS-CoV-2 (COVID-19) NSP9 Recombinant Protein

10-417 0.1 mg
EUR 651.3
Description: May participate in viral replication by acting as a ssRNA-binding protein.

SARS-CoV-2 (COVID-19) NSP2 Recombinant Protein

10-425 0.1 mg
EUR 651.3
Description: The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). SARS-CoV 2 polyproteins incorporate 16 protein domains (nsps). The putative non-structural protein 2 (nsp2) of SARS-CoV plays an important role in viral transcription and replication, and is an attractive target for anti-SARS drug development.

SARS-CoV-2 (COVID-19) ORF8 Recombinant protein

10-436 0.1 mg
EUR 695.4
Description: May play a role in host-virus interaction.

SARS-CoV-2 (COVID-19) ORF8 Recombinant Protein

10-002 0.1 mg
EUR 714.3
Description: LOCUS: QHD43422 121aa linear VRL 18-MAR-2020

SARS-CoV-2 (COVID-19) NSP5 Recombinant Protein

20-187 0.1 mg
EUR 726.9
Description: SARS-CoV-2 (COVID-19) NSP5 Recombinant Protein

SARS-CoV-2 (COVID-19) NSP5 Recombinant Protein

20-188 0.1 mg
EUR 726.9
Description: SARS-CoV-2 (COVID-19) NSP5 Recombinant Protein

SARS-CoV-2 (COVID-19) ORF8 Recombinant Protein

20-192 0.1 mg
EUR 726.9
Description: SARS-CoV-2 (COVID-19) ORF8 Recombinant Protein

SARS-CoV-2 (COVID-19) NSP9 Recombinant Protein

20-212 0.1 mg
EUR 726.9
Description: SARS-CoV-2 (COVID-19) NSP9 Recombinant Protein

Vélemény, hozzászólás?